Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109336, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500827

RESUMO

Temperature is thought to be a key factor influencing global species richness patterns. We investigate the link between temperature and diversification in the butterfly family Pieridae by combining next generation DNA sequences and published molecular data with fine-grained distribution data. We sampled nearly 600 pierid butterfly species to infer the most comprehensive molecular phylogeny of the family and curated a distribution dataset of more than 800,000 occurrences. We found strong evidence that species in environments with more stable daily temperatures or cooler maximum temperatures in the warm seasons have higher speciation rates. Furthermore, speciation and extinction rates decreased in tandem with global temperatures through geological time, resulting in a constant net diversification.

2.
Glob Chang Biol ; 30(3): e17241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38525809

RESUMO

Recent work has shown the decline of insect abundance, diversity and biomass, with potential implications for ecosystem services. These declines are especially pronounced in regions with high human activity, and urbanization is emerging as a significant contributing factor. However, the scale of these declines and the traits that determine variation in species-specific responses remain less well understood, especially in subtropical and tropical regions, where insect diversity is high and urban footprints are rapidly expanding. Here, we surveyed moths across an entire year in protected forested sites across an urbanization gradient to test how caterpillar and adult life stages of subtropical moths (Lepidoptera) are impacted by urbanization. Specifically, we assess how urban development affects the total biomass of caterpillars, abundance of adult moths and quantify how richness and phylogenetic diversity of macro-moths are impacted by urban development. Additionally, we explore how life-history traits condition species' responses to urban development. At the community level, we find that urban development decreases caterpillar biomass and adult moth abundance. We also find sharp declines of adult macro-moths in response to urban development across the phylogeny, leading to a decrease in species richness and phylogenetic diversity in more urban sites. Finally, our study found that smaller macro-moths are less impacted by urban development than larger macro-moths in subtropical environments, perhaps highlighting the tradeoffs of metabolic costs of urban heat favoring smaller moths over the relative benefits of dispersal for larger moths. In summary, our research underscores the far-reaching consequences of urbanization on moths and provides compelling evidence that urban forests alone may not be sufficient to safeguard biodiversity in cities.


Assuntos
Ecossistema , Mariposas , Animais , Humanos , Urbanização , Larva , Filogenia , Biodiversidade , Insetos
3.
Mol Phylogenet Evol ; 194: 108022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325534

RESUMO

The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.


Assuntos
Borboletas , Animais , Filogenia , Borboletas/genética , Nova Guiné , Austrália , Ecossistema
4.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38324397

RESUMO

Automeris moths are a morphologically diverse group with 135 described species that have a geographic range that spans from the New World temperate zone to the Neotropics. Many Automeris have elaborate hindwing eyespots that are thought to deter or disrupt the attack of potential predators, allowing the moth time to escape. The Io moth (Automeris io), known for its striking eyespots, is a well-studied species within the genus and is an emerging model system to study the evolution of deimatism. Existing research on the eyespot pattern development will be augmented by genomic resources that allow experimental manipulation of this emerging model. Here, we present a high-quality, PacBio HiFi genome assembly for Io moth to aid existing research on the molecular development of eyespots and future research on other deimatic traits. This 490 Mb assembly is highly contiguous (N50 = 15.78 mbs) and complete (benchmarking universal single-copy orthologs = 98.4%). Additionally, we were able to recover orthologs of genes previously identified as being involved in wing pattern formation and movement.


Assuntos
Mariposas , Animais , Mariposas/genética , Genoma , Genômica
5.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165153

RESUMO

BACKGROUND: Understanding the genotype of pest species provides an important baseline for designing integrated pest management (IPM) strategies. Recently developed long-read sequence technologies make it possible to compare genomic features of nonmodel pest species to disclose the evolutionary path underlying the pest species profiles. Here we sequenced and assembled genomes for 3 agricultural pest gelechiid moths: Phthorimaea absoluta (tomato leafminer), Keiferia lycopersicella (tomato pinworm), and Scrobipalpa atriplicella (goosefoot groundling moth). We also compared genomes of tomato leafminer and tomato pinworm with published genomes of Phthorimaea operculella and Pectinophora gossypiella to investigate the gene family evolution related to the pest species profiles. RESULTS: We found that the 3 solanaceous feeding species, P. absoluta, K. lycopersicella, and P. operculella, are clustered together. Gene family evolution analyses with the 4 species show clear gene family expansions on host plant-associated genes for the 3 solanaceous feeding species. These genes are involved in host compound sensing (e.g., gustatory receptors), detoxification (e.g., ABC transporter C family, cytochrome P450, glucose-methanol-choline oxidoreductase, insect cuticle proteins, and UDP-glucuronosyl), and digestion (e.g., serine proteases and peptidase family S1). A gene ontology enrichment analysis of rapid evolving genes also suggests enriched functions in host sensing and immunity. CONCLUSIONS: Our results of family evolution analyses indicate that host plant adaptation and pathogen defense could be important drivers in species diversification among gelechiid moths.


Assuntos
Mariposas , Solanum lycopersicum , Animais , Mariposas/genética , Adaptação ao Hospedeiro , Controle de Pragas , Genômica
6.
Cladistics ; 40(1): 21-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37787424

RESUMO

The owlet moths (Noctuoidea; ~43-45K described species) are one of the most ecologically diverse and speciose superfamilies of animals. Moreover, they comprise some of the world's most notorious pests of agriculture and forestry. Despite their contributions to terrestrial biodiversity and impacts on ecosystems and economies, the evolutionary history of Noctuoidea remains unclear because the superfamily lacks a statistically robust phylogenetic and temporal framework. We reconstructed the phylogeny of Noctuoidea using data from 1234 genes (946.4 kb nucleotides) obtained from the genome and transcriptome sequences of 76 species. The relationships among the six families of Noctuoidea were well resolved and consistently recovered based on both concatenation and gene coalescence approaches, supporting the following relationships: Oenosandridae + (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))). A Yule tree prior with three unlinked molecular clocks was identified as the preferred BEAST analysis using marginal-likelihood estimations. The crown age of Noctuoidea was estimated at 74.5 Ma, with most families originating before the end of the Paleogene (23 Ma). Our study provides the first statistically robust phylogenetic and temporal framework for Noctuoidea, including all families of owlet moths, based on large-scale genomic data.


Assuntos
Genoma Mitocondrial , Mariposas , Animais , Filogenia , Ecossistema , Mariposas/genética , Genômica
7.
Mol Ecol Resour ; 24(1): e13881, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888995

RESUMO

Rapid identification of organisms is essential for many biological and medical disciplines, from understanding basic ecosystem processes, disease diagnosis, to the detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than real-time PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a sophisticated laboratory, reduces the risk of cross-contamination, and can be completed in less than 1 h. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.


Assuntos
Ecossistema , Lepidópteros , Animais , Insetos , Bioensaio , Complexo IV da Cadeia de Transporte de Elétrons/genética
8.
Wellcome Open Res ; 8: 75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600586

RESUMO

We present a genome assembly from an individual female Ochlodes sylvanus, the Large Skipper (Arthropoda; Insecta; Lepidoptera; Hesperiidae). The genome sequence is 380 megabases in span. Most of the assembly (99.97%) is scaffolded into 30 chromosomal pseudomolecules, including the assembled W and Z sex chromosomes. The mitochondrial genome has also been assembled and is 17.1 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,451 protein coding genes.

9.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292907

RESUMO

Rapid identification of organisms is essential across many biological and medical disciplines, from understanding basic ecosystem processes and how organisms respond to environmental change, to disease diagnosis and detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta, and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than other real time-PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a lab setting, reduces the risk of cross-contamination, and can be completed in less than one hour. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.

10.
PeerJ ; 11: e15389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377786

RESUMO

Predators and prey exist in persistent conflict that often hinges on deception-the transmission of misleading or manipulative signals-as a means for survival. Deceptive traits are widespread across taxa and sensory systems, representing an evolutionarily successful and common strategy. Moreover, the highly conserved nature of the major sensory systems often extends these traits past single species predator-prey interactions toward a broader set of perceivers. As such, deceptive traits can provide a unique window into the capabilities, constraints and commonalities across divergent and phylogenetically-related perceivers. Researchers have studied deceptive traits for centuries, but a unified framework for categorizing different types of post-detection deception in predator-prey conflict still holds potential to inform future research. We suggest that deceptive traits can be distinguished by their effect on object formation processes. Perceptual objects are composed of physical attributes (what) and spatial (where) information. Deceptive traits that operate after object formation can therefore influence the perception and processing of either or both of these axes. We build upon previous work using a perceiver perspective approach to delineate deceptive traits by whether they closely match the sensory information of another object or create a discrepancy between perception and reality by exploiting the sensory shortcuts and perceptual biases of their perceiver. We then further divide this second category, sensory illusions, into traits that distort object characteristics along either the what or where axes, and those that create the perception of whole novel objects, integrating the what/where axes. Using predator-prey examples, we detail each step in this framework and propose future avenues for research. We suggest that this framework will help organize the many forms of deceptive traits and help generate predictions about selective forces that have driven animal form and behavior across evolutionary time.


Assuntos
Enganação , Comportamento Predatório , Animais
11.
Nat Ecol Evol ; 7(6): 903-913, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188966

RESUMO

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.


Assuntos
Borboletas , Filogenia , Animais , Evolução Biológica , Borboletas/genética
12.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119801

RESUMO

The sphinx moth genus Hyles comprises 29 described species inhabiting all continents except Antarctica. The genus diverged relatively recently (40-25 MYA), arising in the Americas and rapidly establishing a cosmopolitan distribution. The whitelined sphinx moth, Hyles lineata, represents the oldest extant lineage of this group and is one of the most widespread and abundant sphinx moths in North America. Hyles lineata exhibits the large body size and adept flight control characteristic of the sphinx moth family (Sphingidae), but it is unique in displaying extreme larval color variation and broad host plant use. These traits, in combination with its broad distribution and high relative abundance within its range, have made H. lineata a model organism for studying phenotypic plasticity, plant-herbivore interactions, physiological ecology, and flight control. Despite being one of the most well-studied sphinx moths, little data exist on genetic variation or regulation of gene expression. Here, we report a high-quality genome showing high contiguity (N50 of 14.2 Mb) and completeness (98.2% of Lepidoptera BUSCO genes), an important first characterization to facilitate such studies. We also annotate the core melanin synthesis pathway genes and confirm that they have high sequence conservation with other moths and are most similar to those of another, well-characterized sphinx moth, the tobacco hornworm (Manduca sexta).


Assuntos
Melaninas , Mariposas , Animais , Melaninas/genética , Larva/genética , Larva/metabolismo , Genoma , Metabolismo Secundário
13.
Proc Natl Acad Sci U S A ; 120(18): e2221528120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094147

RESUMO

Arthropod silk is vital to the evolutionary success of hundreds of thousands of species. The primary proteins in silks are often encoded by long, repetitive gene sequences. Until recently, sequencing and assembling these complex gene sequences has proven intractable given their repetitive structure. Here, using high-quality long-read sequencing, we show that there is extensive variation-both in terms of length and repeat motif order-between alleles of silk genes within individual arthropods. Further, this variation exists across two deep, independent origins of silk which diverged more than 500 Mya: the insect clade containing caddisflies and butterflies and spiders. This remarkable convergence in previously overlooked patterns of allelic variation across multiple origins of silk suggests common mechanisms for the generation and maintenance of structural protein-coding genes. Future genomic efforts to connect genotypes to phenotypes should account for such allelic variation.


Assuntos
Borboletas , Fibroínas , Aranhas , Animais , Seda/química , Sequência de Aminoácidos , Fibroínas/química , Alelos , Insetos/genética , Borboletas/genética , Variação Genética , Aranhas/genética , Proteínas de Insetos/genética , Filogenia
14.
Sci Adv ; 9(12): eabq3713, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947619

RESUMO

Understanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of Colias butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown. Using comparative genome-wide association study (GWAS) and population genomic analyses, we placed the genetic basis of Alba in time-calibrated phylogenomic framework, revealing that Alba evolved once near the base of the genus and has been subsequently maintained via introgression and balancing selection. CRISPR-Cas9 mutagenesis was then used to verify a putative cis-regulatory region of Alba, which we identified using phylogenetic foot printing. We hypothesize that this cis-regulatory region acts as a modular enhancer for the induction of the Alba ALHS, which has likely facilitated its long evolutionary persistence.


Assuntos
Borboletas , Traços de História de Vida , Animais , Feminino , Filogenia , Borboletas/genética , Estudo de Associação Genômica Ampla , Evolução Biológica
15.
Commun Biol ; 6(1): 246, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882636

RESUMO

With a great variety of shapes and sizes, compound eye morphologies give insight into visual ecology, development, and evolution, and inspire novel engineering. In contrast to our own camera-type eyes, compound eyes reveal their resolution, sensitivity, and field of view externally, provided they have spherical curvature and orthogonal ommatidia. Non-spherical compound eyes with skewed ommatidia require measuring internal structures, such as with MicroCT (µCT). Thus far, there is no efficient tool to characterize compound eye optics, from either 2D or 3D data, automatically. Here we present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which measures ommatidia count and diameter in 2D images, and (2) a µCT pipeline (ODA-3D), which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA to 3D data. We validate these algorithms on images, images of replicas, and µCT eye scans from ants, fruit flies, moths, and a bee.


Assuntos
Formigas , Engenharia , Animais , Abelhas , Microtomografia por Raio-X , Algoritmos , Drosophila
16.
PeerJ ; 11: e14948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915657

RESUMO

Mezcals are distilled Mexican alcoholic beverages consumed by many people across the globe. One of the most popular mezcals is tequila, but there are other forms of mezcal whose production has been part of Mexican culture since the 17th century. It was not until the 1940-50s when the mezcal worm, also known as the "tequila worm", was placed inside bottles of non-tequila mezcal before distribution. These bottled larvae increased public attention for mezcal, especially in Asia, Europe, and the United States. Despite these larvae gaining global interest, their identity has largely remained uncertain other than that they are larvae of one of three distantly related holometabolous insects. We sequenced the COI gene from larvae in different kinds of commercially available mezcals. All larval DNA that amplified was identified as the agave redworm moth, Comadia redtenbacheri. Those that did not amplify were also confirmed morphologically to be the larva of this species.


Assuntos
Mariposas , Animais , Mariposas/genética , Bebidas Alcoólicas/análise , Larva/genética , DNA/genética , Sequência de Bases
17.
Biol Lett ; 19(2): 20220428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36722145

RESUMO

Traits are often caught in a dynamic tension of countervailing evolutionary pressures. Trade-offs can be imposed by predators evolutionarily curtailing the conspicuousness of a sexually selected trait, or acting in opposition to another natural selection pressure, for instance, a different predator with a divergent hunting strategy. Some moon moths (Saturniidae) have long hindwing tails that thwart echolocating bat attacks at night, allowing the moth to escape. These long tails may come at a cost, however, if they make the moth's roosting form more conspicuous to visually foraging predators during the day. To test this potential trade-off, we offered wild-caught Carolina wrens (Thryothorus ludovicianus) pastry dough models with real Actias luna wings that were either intact or had tails experimentally removed. We video recorded wrens foraging on models and found that moth models with tails did not experience increased detection and attack by birds. Thus, this elaborate trait, while obvious to human observers, does not seem to come at a cost of increased avian predator attention. The evolution of long hindwing tails, likely driven by echolocating predators at night, does not seem to be limited by opposing diurnal constraints. This study demonstrates the importance of testing presumed trade-offs and provides hypotheses for future testing.


Assuntos
Quirópteros , Manduca , Aves Canoras , Humanos , Animais , Alimentos , Fenótipo
18.
Sci Data ; 9(1): 382, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794183

RESUMO

Here, we present the largest, global dataset of Lepidopteran traits, focusing initially on butterflies (ca. 12,500 species records). These traits are derived from field guides, taxonomic treatments, and other literature resources. We present traits on wing size, phenology,voltinism, diapause/overwintering stage, hostplant associations, and habitat affinities (canopy, edge, moisture, and disturbance). This dataset will facilitate comparative research on butterfly ecology and evolution and our goal is to inspire future research collaboration and the continued development of this dataset.


Assuntos
Borboletas , Animais , Borboletas/genética , Ecologia , Fenótipo
19.
Proc Natl Acad Sci U S A ; 119(25): e2117485119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704762

RESUMO

Warning signals are well known in the visual system, but rare in other modalities. Some moths produce ultrasonic sounds to warn bats of noxious taste or to mimic unpalatable models. Here, we report results from a long-term study across the globe, assaying moth response to playback of bat echolocation. We tested 252 genera, spanning most families of large-bodied moths, and document anti-bat ultrasound production in 52 genera, with eight subfamily origins described. Based on acoustic analysis of ultrasonic emissions and palatability experiments with bats, it seems that acoustic warning and mimicry are the raison d'être for sound production in most moths. However, some moths use high-duty-cycle ultrasound capable of jamming bat sonar. In fact, we find preliminary evidence of independent origins of sonar jamming in at least six subfamilies. Palatability data indicate that jamming and warning are not mutually exclusive strategies. To explore the possible organization of anti-bat warning sounds into acoustic mimicry rings, we intensively studied a community of moths in Ecuador and, using machine-learning approaches, found five distinct acoustic clusters. While these data represent an early understanding of acoustic aposematism and mimicry across this megadiverse insect order, it is likely that ultrasonically signaling moths comprise one of the largest mimicry complexes on earth.


Assuntos
Mimetismo Biológico , Ecolocação , Reação de Fuga , Mariposas , Acústica , Animais , Mimetismo Biológico/fisiologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Reação de Fuga/fisiologia , Mariposas/classificação , Mariposas/fisiologia , Filogenia , Comportamento Predatório/fisiologia , Piridinas , Ultrassom
20.
Proc Biol Sci ; 289(1968): 20212435, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135350

RESUMO

The regions of the Andes and Caribbean-Mesoamerica are both hypothesized to be the cradle for many Neotropical lineages, but few studies have fully investigated the dynamics and interactions between Neotropical bioregions. The New World hawkmoth genus Xylophanes is the most taxonomically diverse genus in the Sphingidae, with the highest endemism and richness in the Andes and Caribbean-Mesoamerica. We integrated phylogenomic and DNA barcode data and generated the first time-calibrated tree for this genus, covering 93.8% of the species diversity. We used event-based likelihood ancestral area estimation and biogeographic stochastic mapping to examine the speciation and dispersal dynamics of Xylophanes across bioregions. We also used trait-dependent diversification models to compare speciation and extinction rates of lineages associated with different bioregions. Our results indicate that Xylophanes originated in Caribbean-Mesoamerica in the Late Miocene, and immediately diverged into five major clades. The current species diversity and distribution of Xylophanes can be explained by two consecutive phases. In the first phase, the highest Xylophanes speciation and emigration rates occurred in the Caribbean-Mesoamerica, and the highest immigration rates occurred in the Andes, whereas in the second phase the highest immigration rates were found in Amazonia, and the Andes had the highest speciation and emigration rates.


Assuntos
Mariposas , Animais , Teorema de Bayes , Região do Caribe , Especiação Genética , Filogenia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...